Posts by Sarah

Sarah Wettstadt is a microbiologist-turned science writer and communicator writing for professional associations, life science organisations and researchers from the biological sciences. She runs the blog BacterialWorld and co-published the colouring book “Coloured Bacteria from A to Z”. As science communication manager for the Scientific Panel on Responsible Plant Nutrition and blog post commissioner for the FEMSmicroBlog, Sarah writes about microbiology and environmental topics for various audiences. To help scientists improve their science communication skills, she co-founded SciComm Society, through which she offers guides, webinars and 1-on-1 coaching. Previous to her science communication career, Sarah did a PhD at Imperial College London, UK, and a postdoc at the CSIC in Granada, Spain. In her non-scicomm time, she enjoys the sunny beaches in Spain playing beach volleyball or travels the world.

How bacteria create the smells in our world

Bacteria create various smells in our world, from pleasant aromas like freshly baked bread to the less appealing ones like body odour. As bacteria produce volatile organic compounds as part of their metabolism, these contribute to the scents we encounter in our environment, food and even on our bodies. Learn about smelly examples such as the earthy scent of geosmin produced by soil bacteria, the unique aromas in fermented foods and the role of skin bacteria in creating our body odour and smelly feet.

How your immune system battles harmful bacteria every day

Your immune system is constantly patrolling your body, ensuring that it stays clean and free of disease. Every single day, every hour, every minute, pathogens are pouring in, attempting to call your body their home and cause disease. But your immune system has specialised drones who bring the fight directly to the intruders. These drones are the so-called complement system. They keep bacterial pathogens at bay to ensure that we stay healthy.

Microbial fermentation impacts our food, industry and health

Microbial fermentation is a metabolic process that impacts our food, health and many industries. Microbes degrade substrates and convert them into fermentation products, with different species producing unique products. This process is essential in food preservation, creating diverse and complex flavours in fermented foods. Additionally, the microbes involved in fermentation can have health benefits when consumed. Microbial fermentation also plays a significant role in industrial production.

Creating the colours of the rainbow: Bacteria and the vibrant world of pigments

Our world as well as the bacterial world are full of vibrant colours. These colours exist thanks to biopigments; molecules able to capture light and reflect the corresponding colour. Many organisms, as well as bacteria, learned to use biopigments to harvest energy from sunlight, fight foes and adapt to new and challenging environments. Read on to learn what makes the bacterial world so colourful and why biopigments are the Earth’s life savers.

Learning with Agrobacterium tumefaciens: Understanding plants better

The bacterial world is teeming with superheroes that hold the key to unravelling nature’s mysteries. Some bacteria have build remarkable partnerships with plants which not only help us better understand plants but also revolutionize agriculture and biotechnology. Here, we delve into the fascinating relationship between the bacterium Agrobacterium tumefaciens and plants and see how it allowed us to uncover the green world of plants.

Even at the dark and cold bottom of the sea, microbes flourish

Microbes are everywhere. And some have superpowers that allow them to grow in extremely challenging and harsh environments. Especially at the dark and cold bottom of the sea, extremophiles flourish since they interact with other microbes and eat pollutants and contaminants. Interestingly, their microbial activities can also impact our global climate.

How bacteria in your gut microbiome defend pathogens

Bacteria in your gut microbiome help you digest your food, strengthen your immune system and keep you healthy. For this, your gut bacteria keep you free from gut pathogenic bacteria by fighting them with different weapons. Here, we explore some ways gut bacteria defend pathogens and how you can help them protect you.

How bacteria gain energy from cellular respiration to fuel life

To gain energy, all organisms – including bacteria – need to break molecules apart to get their electrons. In bacteria, this process is called bacterial respiration. Here, we will look at where this energy is stored, what bacteria do with both the electrons and energy and how we use bacterial respiration for our own advantages.

Bacterial killer weapons as biocontrol to protect plants

To feed the growing population on our planet, we need to improve our agriculture for plants to stay healthy and produce crops efficiently. One way to protect plants from diseases is to use biocontrol bacteria that actively kill intruding pathogens. Hence, by increasing our food supply, bacteria can help us save this planet.

Bacteria use antibiotics to kill their foes and protect others

We use antibiotics to kill bacteria and fungi. Yet, antibiotics are produced by these microbes to ensure their own survival in the environment. But not only microbes that produce antibiotics benefit from them, but often even other organisms. Read on to find out how antibiotics can help many players.

Thiovulum majus bacteria

Floating veils for large bacteria to attach to and fetch nutrients

Thiovulum majus is a large bacterium that needs a lot of nutrients and energy. To find the perfect location in shallow water, it builds white net-like veils. By attaching to these veils and fast rotation, the bacteria bring in freshwater with lots of new nutrients to keep the community alive.

Comic of the different shapes of bacteria

Looking fabulous: Why bacteria need to stay in shape too

For a long time, bacteria were classified according to their shapes. With new technologies, we learned that the bacterial shapes help them survive in their environments and face harsh conditions. Spheres, rods, stars and screws: Learn about the different bacterial shapes.

Wolbachia bacteria in mosquitos protect us from nasty viruses

Some nasty viruses can live in mosquitos and get transported into our bodies, when these infected mosquitos bite us. Luckily, some bacteria have superpowers that can fight off these viruses. Find out how the bacterium Wolbachia protects both mosquitos and us from these nasty viruses.

6 books about bacteria every microbe lover should read

Microbes and bacteria affect our lives in every possible way. This is why we should all learn more about these fascinating organisms and how to make the best of their impact. Here, I share with you my favourite books about microbes in which you learn how our amazing microbial friends influence your health, body and the environment and even shaped human history.

Microbial profile of the skin microbiome of a hand.

Bacteria on your hands strengthen your unique skin microbiome

How often have you looked at your dirty hands and thought: “Better wash them to get rid of those bacteria!”. Actually, don’t rush to the nearest bathroom to wash them off. It turns out that every person always has bacteria on their hands. And these bacteria are part of everyone’s unique skin microbiome.

Neisseria gonorrhoeae uses their bacterial pili to attach to human gut cells.

About twitching bacteria and their pili

Some bacteria have special hair-like structures to connect to surfaces or other organisms. These bacterial pili help them move along that surface or pull themselves closer to a prey or host. Read about why bacteria need those pili when they are out hunting or infecting us.

Bacteria use capsules as micro-invisibility cloaks

When bacteria enter the human body, they are welcomed by our immune system that is ready to fight them off. However, some bacteria can put on invisibility cloaks that help them hide from the immune system. Thanks to this sugar coat – the so-called bacterial capsule – bacteria can sneak into our bodies, infect us and make us sick.

Sarah Wettstadt is a microbiologist-turned science writer and communicator writing for professional associations, life science organisations and researchers from the biological sciences. She runs the blog BacterialWorld and co-published the colouring book “Coloured Bacteria from A to Z”. As science communication manager for the Scientific Panel on Responsible Plant Nutrition and blog post commissioner for the FEMSmicroBlog, Sarah writes about microbiology and environmental topics for various audiences. To help scientists improve their science communication skills, she co-founded SciComm Society, through which she offers guides, webinars and 1-on-1 coaching. Previous to her science communication career, Sarah did a PhD at Imperial College London, UK, and a postdoc at the CSIC in Granada, Spain. In her non-scicomm time, she enjoys the sunny beaches in Spain playing beach volleyball or travels the world.

Learn more about the fascinating world of bacteria