Bacteria from the Streptomyces genus

Streptomyces bacteria do not like living alone. Instead, they build long and thin tubes in which they live with their brothers and sisters. As these tubes form complex branches in the soil, they keep the bacteria protected from the outside. By growing the ends of the tubes, the bacteria can move through the soil while staying safe.

When conditions are harsh, Streptomyces bacteria set free spores from the ends of their branches. To protect these spores against hungry predators, they cover them with antibiotics that kill other microbes. The bacterium Streptomyces griseus is actually a very efficient antibiotic producer and half of our known antibiotics come from this bacterium.

How bacteria create the smells in our world

Bacteria create various smells in our world, from pleasant aromas like freshly baked bread to the less appealing ones like body odour. As bacteria produce volatile organic compounds as part of their metabolism, these contribute to the scents we encounter in our environment, food and even on our bodies. Learn about smelly examples such as the earthy scent of geosmin produced by soil bacteria, the unique aromas in fermented foods and the role of skin bacteria in creating our body odour and smelly feet.

Creating the colours of the rainbow: Bacteria and the vibrant world of pigments

Our world as well as the bacterial world are full of vibrant colours. These colours exist thanks to biopigments; molecules able to capture light and reflect the corresponding colour. Many organisms, as well as bacteria, learned to use biopigments to harvest energy from sunlight, fight foes and adapt to new and challenging environments. Read on to learn what makes the bacterial world so colourful and why biopigments are the Earth’s life savers.

Bacteria use antibiotics to kill their foes and protect others

We use antibiotics to kill bacteria and fungi. Yet, antibiotics are produced by these microbes to ensure their own survival in the environment. But not only microbes that produce antibiotics benefit from them, but often even other organisms. Read on to find out how antibiotics can help many players.

Bacteria are used in life science research.

Bacteria are key players in vaccine research

To fight nasty microorganisms, researchers need to come up with new strategies to develop vaccines. Turns out bacteria are extremely helpful to researchers, since they provide valuable tools.
Learn how researchers use bacteria to find new vaccines.

Bacteria can form multicellular organisms. They can form bacterial filaments, multicellular aggregates, hyphae networks or magnetotactic multicellular prokaryotes.

Together we are strong – bacteria form multicellular organisms

When thinking of bacteria, you might have the picture of a single cell in your mind. But interestingly, some bacteria come as multicellular organisms with advanced functions. Here, we will learn what multicellular bacteria are and why bacteria form multicellular organisms. We will then look at some colourful examples of multicellular bacteria.

Springtail are attracted to the geosmin produced by Streptomyces bacteria. They eat the bacteria and transport them to new places.

Bacteria produce geosmin to trick bugs into hitchhiking

Bacteria produce many different molecules with unique tastes and smells. We and animals can react in specific ways to the bacterial molecules, however it is not always clear how these molecules actually help the bacteria. A new study focused on one such molecules and revealed that bacteria produce geosmin to attract small animals to use them to hitchhike.